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A Bayesian Structural Uncertainty Model to Target Loyalty and 

Conquesting Rebates to Consumers with Correlated Preferences 

 

ABSTRACT 

 

We propose and estimate a spatial autoregressive multinomial probit model in which 

consumers’ product preferences are correlated based upon their closeness to each other. Our 

proposed model uses a Bayesian structural uncertainty approach to combine multiple sources of 

such contiguity information and also incorporates consumer response heterogeneity. The model is 

applied to the unique problem of improving the efficacy of promotional programs that offer 

targeted conquesting and loyalty discounts to consumers, which is common in the auto industry 

but unstudied in the marketing literature. 

Model calibration on automobile transaction data from the Los Angeles market confirms 

that previous purchases made by consumers are predictive of the future purchases of other 

consumers. Targeted discounts derived from the proposed model for conquesting and loyalty 

promotional programs substantially increase manufacturer profits. We demonstrate that the extant 

method of using a linear combination of the individual weight matrices provides an inferior fit and 

lower incremental profits than the proposed Bayesian structural uncertainty approach to 

information assimilation. 
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1 Introduction 

The lengthy inter-purchase times that characterize buying behavior in many durable goods markets 

(e.g. automobiles) imply that data on the past choices of individual consumers is non-existent or 

very sparse. Therefore, it is difficult to predict future choices based on consumers’ past choice 

history and to design promotional targeting based on the predicted future choices. We propose a 

spatial autoregressive multinomial probit model of automobile choice wherein consumer 

preferences are correlated based on how similar or close they are to each other, and apply the 

estimated model to optimize customized rebates offered to consumers. 

 Levy (1959) claimed that products are symbols and people purchase them because of what 

they mean and communicate about the individual, not only for what they do. Product purchases 

may represent specific values that consumers seek (Reynolds and Jolly 1980, Sheth and Gross 

1991), reflect the self-image of the consumer (Sirgy 1982), or convey some aspect of whom they 

want to be (Escalas and Bettman 2003), especially when these purchases are in publicly consumed 

product categories such as automobiles (Bourne 1957, Graeff, 1988). Escalas and Bettman (2005) 

find that the meaning of products used by reference groups may be appropriated to construct 

personal identity and self-concept (Belk 1988). Thus, if my member group of environmentally 

conscious consumers drives a Prius, then I may also do the same to reinforce my self-image.  

This research suggests that purchases made by consumers may provide information about 

unobserved factors that affect future purchase decisions and, indeed, previous research has shown 

that past purchases of a brand are highly predictive of future brand purchases made by the same 

consumer. This phenomenon, termed structural state dependence (e.g. Erdem 1996, Seetharaman 

2004), links a consumer's past purchases to his or her future choices of the same product. However, 

can my past purchases help to understand and predict the purchases of other consumers? 
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Our research answers this important question by proposing an estimable spatial discrete 

choice model, which leverages the similarity between consumers to infer their product preferences. 

Model parameters estimated on automobile transaction data reveal the predictive power of past 

purchases and other similarity measures. We demonstrate the practical value of the model by 

focusing on two types of consumer cash rebate programs, which are structured around the vehicle 

currently owned by a potential buyer. These programs are popular in the auto industry but hitherto 

unstudied in the marketing literature. The first, termed a loyalty rebate, rewards consumers who 

currently own the same vehicle model (e.g. a $500 rebate on a Camry for Camry owners), and the 

second, a so-called conquesting rebate, can only be availed by consumers who currently own a 

different vehicle model (e.g. a $500 rebate on a Camry for current Accord owners). We show how 

to use the model to optimize targeted discounts offered to consumers. 

A vast literature in sociology and psychology suggests that homophily, the tendency for 

people to associate with similar others, also causes consumers who are close to one another in a 

social network to act in similar ways (Shalizi and Thomas, 2011). In marketing, Ma et al. 2015, 

use consumer purchases of call back ringtones to disentangle the effect of latent homophily from 

social influence and common exogenous factors. While our model also leverages the similarity 

between consumers to infer these correlated preferences, it does so by explicitly modeling the 

spatial correlation in the error term, without relying on the explicit ties between consumers that are 

the hallmark of homophily. 

The potential predictive power of consumer similarity is easy to visualize in a situation in 

which the proximity between consumers stems from the physical distance between them. This 

geographic closeness, a proxy for many socio-demographic variables like income, education, 

wealth and property values, which are also related to consumer purchase behavior, has been the 
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primary focus of previous spatial models in marketing (Yang and Allenby, 2003, Jank and Kannan, 

2005) and economics (LeSage, 2003). 

We contribute to the literature by expanding the scope of contiguity to incorporate the 

similarity in the products that consumers’ have previously purchased and establishing the 

predictive power of doing so. The proposed model results in an estimable choice model in which 

consumer choice decisions are correlated between consumers, which is different from the within-

consumer inertia effects documented by previous research in marketing. 

Spatial models provide a natural way to model the correlation between different units of 

analysis based on how close they are in a similarity space, with most marketing applications 

focusing on physical proximity and using continuous rather than discrete outcomes. In their most 

basic form, these models use the spatial locations of the units or, more precisely, their proximity, 

to infer the correlation between them. Bronnenberg and Sismeiro (2002) and Bronnenberg and 

Mela (2004) model the correlation in brand shares across different markets. Bezawada et al. (2009) 

show how aisle placement of a brand in a particular store can affect the sales of another brand in a 

completely different category while Duan and Mela (2009) document the location-based 

correlation in housing prices. 

 In contrast, research on spatial correlation in preferences in a discrete choice setting is 

sparse. Jank and Kannan (2005) use experimental data to estimate a logit model of consumer 

choice of two product forms of a book - print or PDF - in which preferences and price sensitivities 

are spatially correlated across geographic regions. Yang and Allenby (2003) estimate a binary 

choice model in which consumer preferences for a vehicle’s country-of-origin (Japanese/non-

Japanese) are spatially correlated based on the distance and demographic similarity between 
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consumers. The previously cited paper by Ma et al. (2015), models consumers’ decision of whether 

or not to purchase a callback ringtone and which ringtone to acquire. 

 Our proposed model adds to this existing literature in both methodological and substantive 

ways. First, we propose and implement a theory-based innovative approach to combine multiple 

sources of consumer contiguity information based on the structural model uncertainty literature 

(Draper 1995, Kamakura et al. 1996). Specifically, we combine interpretable probabilities that 

emerge from each unique contiguity criterion thus coherently assimilating the associated predictive 

uncertainty, and validate it in our empirical application. Also, in contrast to the previously cited 

research in spatial models, the proposed spatial model allows for consumer heterogeneity in the 

marketing mix coefficients, which is an important requirement for any targeted or customized 

marketing campaign (Rossi et al. 1996). 

Our substantive contribution is to add to the research on targeted promotional rebates in 

the automobile industry and on the role of trade-ins. Most previous trade-in research has studied 

how trading-in affects consumers’ willingness to pay for a new car (Kwon et al. 2015). The 

downstream impact of the structure of trade-in contracts (Kim et al. 2011) and trade-in incentives 

(Miller et al. 2019) have also been studied. We add to this literature by developing a new similarity 

measure based on the features of traded-in vehicles and establishing its validity as a contiguity 

metric. Previous research in the promotion planning area (e.g., Silva-Risso and Ionova, 2008) uses 

a random coefficient logit model by relying on an a-priori geographic aggregation approach as the 

basis for improving the allocation of promotional incentives. Our model extends this approach by 

providing a more nuanced identification of a focal consumer's preference based on her proximity 

to other consumers, while accommodating response heterogeneity based on geographic 

aggregation. Further, we apply the model to improve the design of targeted discounts, termed 
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loyalty and conquesting rebates, which are popular in the US auto industry but have not been 

previously studied in marketing. 

 We estimate the model parameters on a dataset of new car purchases in the Los Angeles 

market using a Hierarchical Bayes approach. The in-sample fit of the proposed model is superior 

to several other benchmark models, including the random coefficient probit model (RCP), spatial 

models that only include geographic closeness, or that directly combine contiguity matrices. The 

performance of the model in holdout samples is noteworthy; it yields a better fit than an RCP that 

has been calibrated directly on data for that market. We apply the model to improve a 

manufacturer’s loyalty and conquesting programs and show that it yields higher profits than those 

from a state-of-the-art approach based on the RCP model (Rossi et al., 1996, Silva-Risso and 

Ionova 2008). 

The rest of the paper proceeds as follows. In the next section, we provide details of the model. We 

then describe the dataset used in our empirical application and our Hierarchical Bayes estimation 

procedure, which is followed by a discussion of the estimation results from the calibration data 

and holdout sample performance. We then apply the parameters of the proposed model to the 

problem of improving a manufacturer promotion program in which targeted conquesting and 

loyalty discounts are offered to consumers. We conclude with a summary of our findings and some 

directions for future research. 

 

2 Model 

We begin with a very general specification of the probit choice model, which forms the basis of a 

number of non-spatial and spatial models that are estimated in the empirical part of the paper. 
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Figure 1 provides a schematic overview of the basic components and the models while Table 1 

summarizes their key differences. 

===================================================================== 

Insert Table 1 and Figure 1 about here 

===================================================================== 

The outcome variable that we focus on is the vehicle model 𝑗 = 1, 2, . . . , 𝐽  chosen by 

consumer 𝑖 =  1, 2, … , 𝑛, conditional on purchase in the product category. This choice outcome, 

𝑦𝑖, is modeled using an additive random utility framework, yielding 

(1)                                              𝑦𝑖 = 𝑗∗ 𝑖𝑓 𝑈𝑖𝑗∗ > 𝑈𝑖𝑗 for all 𝑗 ≠ 𝑗∗, 

where 𝑈𝑖𝑗  are the endogenous latent utilities for each consumer-vehicle combination. A 

heteroskedastic regression model with unknown variance vector, 𝜎𝑗, is used to specify 𝑈𝑖𝑗 as 

(2)                               𝑈𝑖𝑗 = 𝜇𝑖𝑗 + 𝑋𝑖𝑗𝛽𝑖 + 𝜎𝑗𝜀𝑖𝑗  𝑓𝑜𝑟  𝑖 = 1, … , 𝑛 and 𝑗 = 1, … , 𝐽 , 

where 𝑋𝑖𝑗 is a matrix of alternative- and consumer-specific variables,  𝜇𝑖𝑗 and 𝛽𝑖 are consumer-

specific preference and response parameters, respectively, and 𝜀𝑖𝑗 are i.i.d. normal errors. Fixing 

𝐽 as the reference vehicle for model identification purposes implies that equations (1)-(2) yield a 

generalized multinomial probit model. Because only one outcome 𝑦𝑖 is observed for consumer 𝑖, 

this model is over-parameterized and additional structural assumptions must be imposed to 

estimate the parameters efficiently. Models 1 and 2 in Table 1, the basic probit and the RCP model, 

respectively. Both are specified and estimated in the standard way though it is important to note 

that for the RCP heterogeneity is incorporated at the ZIP code level. We now turn to more details 

about the spatial models. 



7 
 

To isolate the benefits provided by modeling spatially correlated preferences and to clarify 

model exposition, we start by describing Models 3, 4 and 5 in Table 1 that incorporate these 

preferences but do not incorporate response heterogeneity. 

Let W be a 𝑛 × 𝑛 weight matrix that is based on a well-defined contiguity characteristic 

(e.g., spatial distance), whose individual elements are 𝑤𝑖𝑖 = 0, 𝑤𝑖𝑘 ≥ 0 and ∑ 𝑤𝑖𝑘
𝑛
𝑘=1 = 1. The 

last constraint ensures that the contiguities are always row-normalized so 𝑤𝑖𝑘  is the relative 

contiguity of individual 𝑘 with individual 𝑖. To incorporate spatially correlated preferences (SCP) 

(but not response heterogeneity) the following structural constraints are imposed on the parameters 

in equations (1)-(2): 

(3)                                                𝛽𝑖 = 𝛽  and  𝜇𝑖𝑗 = 𝛼𝑗 + 𝜃𝑖𝑗 . 

(4)                                                      𝜃𝑖𝑗 = 𝜌 ∑ 𝑤𝑖𝑘𝜃𝑘𝑗
𝑛
𝑘=1 + 𝜓𝑗𝜉𝑖𝑗. 

This implies that consumer utility, 𝑈𝑖𝑗 in equation (2), consists of a deterministic part 𝛼𝑗 +

𝑋𝑖𝑗𝛽 , with 𝛼𝑗  common to all consumers, a stochastic component, 𝜃𝑖𝑗 , which represents the 

correlated component of consumer 𝑖’s preference for alternative j, and the probit error term, 𝜀𝑖𝑗. 

Based on the mixed regressive, spatial autoregressive model of Anselin (1988), we impose 

a second-level hierarchical structure on the 𝜃𝑖𝑗 in (4), and specify the preference vector of each 

consumer, 𝜃𝑖𝑗, as a weighted average of the preferences of all other individuals with the similarity 

between ith and kth consumers serving as the weight. Thus, for two consumers, 𝑘 and 𝑘 , the former 

being more similar to 𝑖 than the latter (i.e., 𝑤𝑖𝑘 < 𝑤𝑖𝑘), equation (4) ensures that consumer i’s 

preferences will correlate more highly with 𝑘 than with 𝑘 . 

The spatial autoregressive parameter, 𝜌, captures the average influence of neighboring 

consumers on the preferences of the focal consumer. The residuals 𝜉𝑖𝑗  in (4) have a standard 

normal distribution and heterogeneity in the variances is admitted through the unknown standard 
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deviation 𝜓𝑗s. The key difference between the spatial autoregressive model in (4) and the probit 

model of Jank and Kannan (2005) (henceforth referred as JK), which includes two alternatives and 

an outside good with spatially correlated utilities, is that our model includes a spatial multiplier, 𝜌, 

which allows for global spillovers of the spatial structure across all the covariates, while JK’s 

model does not. 

All of the proposed spatial choice models rely on the spatial weight matrix 𝑊 as a critical 

building block. For a set of 𝑛 consumers, each element 𝑤𝑖𝑘 of the 𝑛 × 𝑛 matrix, 𝑊 represents the 

proximity between a "row" consumer (i) and a "column" consumer (k). In our empirical application, 

𝑊 is based on either of two natural choices for proximity between consumers: (i) geographical 

location, which yields matrix 𝑊  consisting of individual entries, 𝑤𝑖𝑘 and (ii) how similar their 

previously purchased vehicles are to each other, which yields 𝑊 , with individual elements 𝑤𝑖𝑘.1 

Models 3 and 4 use 𝑊  and 𝑊 , respectively, to incorporate spatially correlated preferences. 

The availability of multiple contiguity matrices naturally raises the question of how best to 

combine information from them. We start by recognizing that each contiguity matrix is separately 

informative about preference correlation and the vector of choice probabilities that emerge from 

each W represents the final effect of the closeness information. Also, because our targeting 

application requires that we leverage all of the information available in the matrices maximally, it 

is critically important that the interpretable probabilities tied to each unique contiguity criterion be 

combined in a structured manner that ensures that the contiguity criteria more predictive of each 

consumer’s preferences receives a proportionately greater weight. 

                                                           
1 We postpone a detailed description of how the individual elements of each matrix are constructed to the 
empirical application section. 
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Noting these requirements, we propose an innovative, structural, approach to combine the 

information in the two matrices using Bayesian model averaging to mix the individual probabilities 

associated with 𝑊  and  𝑊 .  Not only does Bayesian model averaging provide a rigorous 

mechanism for incorporating the structural uncertainty associated with the different models (Carlin 

and Chib, 1995; Diebolt and Roberts, 1994; Wedel and Sabro, 1994; Steel 2020), it also allows the 

information to be combined non-linearly and effectively incorporates heterogeneity in the 

contiguity criterion. A detailed description of the method follows. 

Consider 𝐿 probit models 𝑀𝑙s with spatially correlated preferences based on (1)-(4), each 

associated with a corresponding weight matrix 𝑊(𝑙). Each model 𝑀𝑙 defines a set of probabilities 

𝜏𝑖𝑗(𝑙)s of a customer 𝑖 choosing product 𝑗. For each consumer i, we would like to combine the 

individual’s 𝜏𝑖𝑗(𝑙)s from different models. Following Hoeting et al. (1999), it follows that 𝜏𝑖𝑗(𝑙) =

𝑃(𝑀𝑙, 𝑌)𝑃(𝑀𝑙| 𝑌) where Y is the observed choice vector and 𝑌 = (𝑦1, … , 𝑦𝑛) is the future choice 

vector based on model (1)-(4). If each model is assumed to be a-priori equally likely we have 

𝑃(ℳ𝑙|𝑌) = 𝑃(𝑌|ℳ𝑙) { ∑ 𝑃(𝑌|ℳ𝑘)} 𝑘⁄  where 𝑃(𝑌|ℳ𝑙) is the integrated Bayes risk, written in 

terms of the parameters in (1)-(4) as: 

(5)          𝑃(𝑌|ℳ𝑙) = ∫ 𝑃(𝑌|𝛼, 𝛽, 𝜃, 𝜎) 𝜋(𝛼) 𝜋(𝛽) 𝜋(𝜃|𝑊(𝑙), 𝜓) 𝜋(𝜓) 𝜋(𝜎) 𝑑𝛼 𝑑𝛽 𝑑𝜃 𝑑𝜓 ,   

and all subscripts are omitted to improve clarity. In the above 𝑃(𝛼, 𝛽, 𝜃, 𝜎) is the likelihood based 

on the model (1)-(3) and 𝜋(𝑊(𝑙), 𝜓) is the prior from (4) based on the weight matrix 𝑊(𝑙). These 

𝑃(𝑀𝑙) values are combined with a set of mixing parameters for the 𝐿 models which are non-

negative and sum to unity. In our empirical study with two weight matrices, there is only one free 

mixing parameter. We use a beta prior over this mixing parameter. Independent priors are used for 

the intercepts 𝛼, response parameters 𝛽 as well as the spreads 𝜎 and 𝜓. The Appendix provides a 

detailed MCMC algorithm for implementing this approach. 
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We note that the extant method (e.g.,  Yang and Allenby, 2003) weights the component 

contiguity matrices differently to produce a single weight matrix: In this method, 𝑊𝐶 =

∑ 𝜆𝑙𝑊(𝑙)𝐿
𝑙=1  where, 𝜆𝑙 ≥ 0, ∑ 𝜆𝑙

𝐿
𝑙=1 = 1.   A weakness of this approach is that if one of the 

contiguity matrices, say 𝑊 , is more predictive of the preference correlation, then the model fails 

to recognize that a larger fraction of the population should be modeled using 𝑊 . In contrast, 

because the Bayesian model averaging approach mixes probabilities, as opposed to contiguity, it 

ensures that more weight is given to 𝑊 . The empirical application demonstrates that the Bayesian 

model averaging is superior on predictive performance and in capturing structural uncertainty. 

A vast literature in marketing, and the automobile industry, in particular, has shown the 

importance of accounting for heterogeneity in modeling consumer demand particularly for 

designing targeted promotional programs (Rossi et al. 1998, Silva-Risso and Ionova 2008). In 

models estimated for CPG products using scanner panel data, the household is the typical unit of 

analysis because multiple observations are available at this disaggregate level. In durable goods 

markets such as cars, with inter-purchase times of about five to seven years, however, some form 

of geographical aggregation is typical (Bucklin et al. 2008). While the preference coefficients in 

Model 6 already account for such heterogeneity, the response coefficients do not. Therefore, we 

propose Model 7, which allows for ZIP code level heterogeneity in the response parameters so that 

𝛽𝑖 = 𝛽𝑘 𝑖𝑓 𝑧𝑐𝑖 = 𝑧𝑐𝑘 for any 1 ≤ 𝑖, 𝑘 ≤ 𝑛 and for all 𝑗 = 1, … , 𝑛. In so doing, we not only add to 

the spatial model literature but also the literature on promotional planning. Figure 1 shows how 

the various components of the model are combined into the final Model. 
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3 Data and Estimation 

3.1 Data 

The Power Information Network (PIN), a division of J. D. Power and Associates, collects new 

vehicle transaction data from a large number of dealers electronically. The data used in this study 

come from a transaction history of new car purchases in the midsize sedan category made by 

consumers in the Los Angeles Designated Market Area (DMA) during the first six months of 

2007.2  

Since the four top-selling models accounted for about 93% of all transactions in this 

category, our analysis is restricted to predicting consumer choice among these four models. Further, 

because we are interested in examining the impact of previously purchased vehicles, we restrict 

our sample to only those transactions in which a consumer purchasing a new car also traded-in 

another vehicle. Although consumers in our sample purchased only one of the four shortlisted 

midsize sedans, they traded-in 295 different vehicle models representing 22 manufacturers. 

 The final data set consisted of a total of 1342 new car transactions over a six-month period: 

821 transactions from the first four months are used to calibrate model parameters and the 

remaining 521 transactions are held out for model validation in the Los Angeles market. 

The data includes several details of each transaction including the price each individual 

consumer paid for the vehicle, the Annual Percentage Rate (APR) for finance and lease contracts, 

the monthly payment amount, manufacturer rebate (if any) and the residual value of the vehicle if 

it was leased. The data also contain the geo-coded location (i.e., precise latitude and longitude 

coordinates) of the consumer's residence as well as detailed attribute information for traded-in 

                                                           
2 All statistics are based on the observations in our data set.  
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vehicles. Table 2 reports descriptive statistics for our sample including vehicle market shares 

expressed as a fraction of the sales of the included models. 

===================================================================== 

Insert Table 2 about here 

===================================================================== 

The variables included in the choice models are the log of price and a last-make dummy 

variable (1 if make of the new car (e.g. Toyota) is the same as that of the traded-in car), which 

captures the inertia or state dependence in vehicle choice, and the distance between a consumer’s 

home address and the closest dealer of the car make. We standardized vehicle transaction price to 

construct the baseline price net of vehicle options with a hedonic regression (e.g. Zettelmeyer et 

al. 2006). We then constructed adjusted vehicle prices by subtracting manufacturer rebate, the 

dollar amount of APR promotion, and trade-in over- or under- allowance. We calculated the dollar 

amount of an APR promotion using a 5% base APR level. Specifically, for transactions with APR's 

less than 5%, the dollar amount corresponding to the APR subvention was treated as an APR 

promotion. APR's greater than 5% were considered non-promotional and the dollar amount of the 

promotion was set to zero. The data also includes a field for Trade-in over-[under-] allowance, 

which represents the difference between the price the dealer pays to the consumer for the trade-in 

car and its wholesale value. Paid prices are adjusted by the over-[under-] allowance to control for 

the possibility that dealers may pay consumers a higher[lower] price for the traded-in vehicle and 

then charge them a lower[higher] price for the new car (Scott-Morton et al. 2001). 

 Because retailers’ pricing decisions can be made based on market conditions or vehicle 

characteristics that are unobservable by researchers, prices and the probit error term may be 

correlated. The potential endogeneity of prices may bias the estimate of the price coefficient 
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(Villas-Boas and Winer 1999). We address this issue using the control function approach of Petrin 

and Train (2010), i.e., by first regressing transaction prices for each vehicle model on instruments 

and using the residuals from these equations for each vehicle model as additional explanatory 

variables in the choice model. We use the wholesale prices for each vehicle model (i.e. price that 

a dealer pays for a car to a manufacturer) as instruments because they are highly correlated with 

retail price but unlikely to be correlated with unobservables that affect retailer pricing decisions. 

This procedure produces three price residual variables corresponding to Accord, Altima and 

Camry with Passat being a baseline alternative. 

 

3.2 Similarity Matrices 

We now describe how the two 𝑊 matrices in our study were operationalized. 

 

3.2.1 Geographic Location 

Each element of 𝑊  is calculated using a two-step approach. Let 𝑑𝑖𝑘  represent the Euclidian 

geographic distance between the residential locations of consumers 𝑖 and 𝑘. In the first step, a raw 

contiguity measure between these consumers is calculated as: 𝑤𝑖𝑘 = exp( 1/𝑑𝑖𝑘) if 𝑖 ≠

𝑘 and 𝑤𝑖𝑖 = 0, which ensures that contiguity increases as the distance between the residential 

locations decreases (Bezawada et al. 2009, Yang and Allenby 2003). In the second step, the raw 

𝑤𝑖𝑘  values are row-normalized, so values in each row sum to unity as in Anselin (1988) and 

LeSage (2000). The final elements of the matrix are given by 𝑤𝑖𝑘 =

exp(1 𝑑𝑖𝑘⁄ ) {∑ exp(1 𝑑𝑖𝑙⁄ )𝑙≠𝑖 }⁄  for 𝑖 ≠ 𝑘 and 0 for 𝑖 = 𝑘. 
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3.2.2 Previous Vehicle 

We use a Lancasterian perspective to represent the consumer’s previously-owned vehicle as a 

vector of attributes. Specifically, each trade-in vehicle is described by the following five 

characteristics: manufacturer (e.g. GM, Honda.), nameplate (e.g. Chevrolet, Acura.), model (e.g. 

Taurus, Accord.), manufacturer continent of origin (e.g. American, Asian) and the number of 

Cylinders (4, 6, 8), and the raw similarity measure is specified as exp(𝑐𝑖𝑘), where 𝑐𝑖𝑘 is the number 

of characteristics common to the vehicles traded in by consumers 𝑖  and 𝑘 . For example, if 

consumers 𝑖 and 𝑘 traded in a Chevrolet Malibu and a Buick Regal, respectively, then, because the 

two vehicles share the same continent of origin and manufacturer, 𝑐𝑖𝑘 = 2. This operationalization 

implicitly assumes that all vehicle characteristics are equally important, which reduces the number 

of parameters required to estimate the model (Ho and Chong 2003). As before, the raw elements 

of the matrix are normalized so that the sum of the elements in each row is one, and the diagonal 

elements of W are zero. Thus, the final elements of the vehicle similarity matrix are given by 

𝑤𝑖𝑘 = exp(𝑐𝑖𝑘) {∑ exp(𝑐𝑖𝑘)𝑙≠𝑖 }⁄ for 𝑖 ≠ 𝑘 and 0 for 𝑖 = 𝑘,  which is consistent with the 

discussion in Bavaud (1998). The exponential function ensures positive values in the similarity 

matrix. 

 

3.3 Estimation 

We used Markov Chain Monte Carlo (MCMC) methods to estimate the parameters of each model. 

Specifically, we employed Gibbs sampling steps to make draws from the full conditional 

distributions of each parameter, except for ρ, which required the use of a Metropolis-Hastings step 

because its posterior distribution did not have a closed-form solution. We ran the sampler for 

100,000 iterations, thinning it by retaining every 10th draw, and assessed convergence by 
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monitoring the time-series plots of the parameter draws. We discarded the first 9,000 retained 

draws as "burn-in" and used the last 1,000 draws to make inferences about the posterior distribution 

of the parameters. We checked the stability of our estimates by comparing them against two other 

samples in which every draw or every fifth draw after burn-in, respectively, was retained for 

posterior inference. For Model 5, the two weight matrices corresponding to vehicle and geographic 

respectively are combined using a beta prior on the mixing weight. Details of the estimation 

procedure, including the conditional distributions of each of the parameters as well as the sampling 

techniques involved in structural uncertainty based aggregation of Models 6 and 7 are presented 

in the Appendix. 

Our algorithm was coded using statistical software R. On a 1.7GHz quad-core Intel i7 

processor with 32GB RAM, 100,000 MCMC iterations for Models 3, 4 and 5 took about 30 hours 

and about 50 hours for Models 6 and 7. For each model, we verified convergences using various 

statistics and trace plots that are available the R packages coda (Plummer et al. 2019) and 

mcmcplot (Curtis et al. 2015). 

 

4 Results 

4.1 Los Angeles Data 

To evaluate the performance of the proposed model, we used the calibration sample to estimate 

the parameters for the seven different models. Two non-spatial models serve as the benchmark, 

the standard probit model (Model 1), and the random coefficient probit model (Model 2), which 
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allows for the usual preference and response heterogeneity using the a priori aggregation approach, 

with parameters aggregated to the three-digit ZIP code level.3  

 Five different spatial models are fit to the data. Models 3 and 4 represent two different 

versions of the Preference Correlation model in which the preference coefficients (intercept terms 

in the utility function) of consumers are spatially correlated based on geographic contiguity (Model 

3) and vehicle similarity (Model 4), respectively. Models 5 and 6 allow for both spatial contiguity 

matrices to affect the spatial correlation in preference coefficients. In Model 5 the final 𝑊 matrix 

is a convex combination of the individual, geographic- and vehicle-similarity based contiguity 

matrices, a la Yang and Allenby (2003). Model 6, based on the structural uncertainty approach, 

mixes the individual probabilities derived from each W matrix. Finally, Model 7 incorporates the 

spatial correlation and mixing of probabilities in Model 6, but also allows for heterogeneity in the 

response coefficients by aggregating observations for each three-digit ZIP code. To make 

predictions from the spatial models on holdout samples in geographical markets, the preference 

and marketing mix parameters for consumers in each target market must be imputed from the 

parameters estimated in the calibration sample. Next, we describe how this is done. 

 

4.2 Imputation Procedure for Holdout Samples 

The following two-step imputation procedure is used to impute the preference parameters. In the 

first step, an augmented weight matrix (𝐴𝑊) is created to include consumers from both calibration 

                                                           
3 The data set contains 24 three-digit ZIP codes, yielding an average of about 48 observations for 

each geographic unit. We prefer this level of aggregation because using five-digit ZIP codes 

instead, results in some ZIP codes having only very few observations.  
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and holdout samples. Thus 𝐴𝑊 has dimension 1342 × 13424, with individual entries representing 

the vehicle similarity between row and column consumers. In the second step, the preference 

parameters for the holdout consumers are obtained by averaging the corresponding values for 

consumers in the calibration sample, with the corresponding elements of the 𝐴𝑊 matrix serving 

as weights. In other words, we use the estimated parameters from the calibration sample but weight 

them by the (normalized) similarity between the calibration and hold out consumers. Thus, for a 

holdout consumer h, we set: 

(6)                                  𝜃 𝑗 = ∑ 𝑤 𝑐𝜃𝑐𝑗𝑐 , �̂� 𝑗 = ∑ 𝑤 𝑐�̂�𝑐𝑗𝑐   for 𝑗 = 1, … , 𝐽,  

where c varies overall calibration consumers and 𝑤 𝑐 are the similarity weights between consumer 

c in the calibration sample and consumer h. The marketing mix parameters for the holdout sample 

are directly drawn from the estimated ZIP code specific posterior distribution. 

 

4.2 Model Performance Comparison 

Following previous research (Allenby et al. 1998) model performance is evaluated using two 

measures: log marginal density (LMD) of Newton and Raftery (1994) calculated after eliminating 

very low likelihood regions and the mean absolute deviation (MAD). These fit statistics are 

reported in Table 3 for the Los Angeles data.  

===================================================================== 

Insert Table 3 about here 

===================================================================== 

                                                           
4 821 consumers in the calibration sample and 511 consumers in the holdout sample. 
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The results reveal that, as expected, Model 2 fits the data better than Model 1, establishing 

that consumer heterogeneity plays a significant role in new car purchases. In the models accounting 

for spatial correlation in preference, Model 4 provides a better fit than Model 3, which implies that 

previous vehicle similarity is a more important driver of the spatial correlation in consumer 

preference than is geographic closeness. Interestingly, the direct mixing of 𝑊 matrices, as in Yang 

and Allenby (2003), yields an inferior fit in the calibration sample (LMD –490.52 and MAD 0.325) 

than that obtained from only using the vehicle contiguity matrix (LMD –482.38 and MAD 0. 317).   

Holdout sample fit is consistent with these results (MAD of 0.425 versus 0.423). The 𝑊 

matrix mixing parameter is estimated to be 0.514 in Model 5, which, while weighting the previous 

vehicle similarity matrix heavily, still deteriorates model fit. This indicates that the existing 

reduced-form method of combining contiguity matrices can fail to capture similarity information 

of consumers. In contrast, the structural uncertainty based choice probability mixing performs the 

best among the pure spatially correlated preference models: LMD –462.43 and MAD 0.315 in the 

calibration sample and MAD of 0.421 in the holdout sample. Finally, Model 7 yields the best fit 

in all samples, with a noticeably significant improvement in holdout MAD to 0.373. As such 

Model 7 produces 11.4% reduction in out-of-sample error from its nearest competitor, 

underscoring the value of incorporating spatial correlation in both preference and response 

heterogeneity. Therefore, the rest of our discussion is based on the parameter estimates of Model 

7. 

Mathematically, the main difference between Models 5 and 6 is that while the latter 

combines the two spatially autocorrelated models based on geographic and vehicle weights using 

their respective choice probabilities, the former directly combines the weight matrices. It is often 

difficult to construct an ideal linear combination of the weight matrices preserving the important 
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local features of the individual weight matrices. We observe this in Table 3.  In Table 3 we found 

that Model 5 performed slightly worse than Model 4 that uses only vehicle characteristics. In 

Model 4, 𝜆  and 𝜆𝑔 = 1 − 𝜆  were set to 1 and 0 respectively whereas the optimal calibrated 

values of 𝜆  and 𝜆𝑔 in Model 5 were 0.54 and 0.46 respectively. We used a symmetric beta prior 

on 𝜆  in Model 5 and it appears that the Bayes risk based on the combination of weight matrices 

was not very sensitive to the values of the 𝜆  parameter which subsequently led to imprecise 

estimation. 

On the other hand, Bayesian model averaging in Model 6 improves both estimation and 

predictive accuracy by using 0.95 and 0.05 weights to combine probabilities from vehicle and 

geographic characteristics based spatial autocorrelation models. The estimated 𝜆  weight in Model 

6 reconfirms that vehicle characteristics are more useful than geographic contiguity as seen in 

model 3 and 4.  But Model 6's significantly better performance over Model 4 also illustrates that 

in consumer subsets where the geographically weighted model works better than the vehicle model, 

its impact is not lost but properly reflected in their probabilistically weighted combination.    

===================================================================== 

Insert Table 4 about here 

===================================================================== 

 Table 4 reports the coefficients from Model 7. The coefficient for the Last Make dummy 

is positive and highly significant, showing that consumers tended to purchase the same make 

vehicle as he or she had chosen in the previous purchase occasion. The estimate of the average 

price coefficients across all ZIP codes is – 1.58 and its high posterior variance show that price-

sensitivity varies greatly across ZIP codes. At a 10% significance level, we see that the average 
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price coefficient is significantly negative; but because of heterogeneity across ZIP codes, the 

average price coefficient is not significant at 5% level.  

Spatial spillover autoregressive parameters for both geographic proximity and vehicular 

preference similarity are significant, which indicates that consumers’ preferences for vehicle 

models are positively correlated with preferences of both geographically neighboring consumers 

and those who had chosen similar vehicles in a previous purchase occasion. 

 

5 Determining Optimal Conquesting and Loyalty Rebates 

In this section, we use the parameter estimates from the proposed model to find the optimal loyalty 

or conquesting rebate amount to be offered to each three-digit ZIP code. For comparison purposes, 

we use the parameters from Model 2 in two ways: (1) to derive the optimal rebate for each ZIP 

code not based on previous vehicle ownership (a la Silva-Risso and Ionova 1996), and (2) the 

equivalent optimal loyalty or conquesting rebate for each ZIP code. 

Taking the position of a Toyota Camry marketing manager, we used the following 

procedure to derive the optimal rebate for each ZIP code from our model. The basic building block 

of this analysis is the predicted contribution 𝐶(𝑅𝑘, 𝑍, 𝑡)  from a rebate of type t (loyalty or 

conquesting), amount $𝑅𝑘, in ZIP code Z. The expected contribution of this rebate on the set of 

all consumers in ZIP code Z, who get this rebate, 𝐶(𝑍, 𝑡), is calculated as: 

(7)      1/𝐿 ∑ ∑ 𝑃𝑟𝑜𝑏𝑙(customer 𝑐 bought Camry|𝑃𝑟𝑖𝑐𝑒𝑐, 𝑅𝑘)  ×𝑐 ∈𝐶(𝑍,𝑡) 𝑀𝑎𝑟𝑔𝑖𝑛(𝑃𝑟𝑖𝑐𝑒𝑐, 𝑅𝑘)𝐿
𝑙=1 , 

using the 𝐿 retained draws from the posterior distribution of model parameters for the concerned 

ZIP code. The value 𝑘 of the rebates 𝑅𝑘  were varied in a grid starting from $0 to the highest 

observable value, $3200, in steps of $100. Specifically, the probability that consumer c in ZIP code 

Z chooses the Camry when it offers a consumer cash rebate was based on the posterior parameter 
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estimates from the lth retained draw, keeping the set of other covariates the same, but decreasing 

the price by the face value of the rebate. Because data on manufacturer margin is not readily 

available, based on our discussions with industry experts we assume it to be 25% of the selling 

price. The optimal rebate when a single rebate level is applied to all consumers in ZIP code Z is 

given by 𝑅𝑍
∗ = 𝐶(𝑅𝑘, 𝑍, 𝑎𝑙𝑙).   The total profit from the optimal single rebate strategy is determined 

by summing these maximum contributions over all the ZIP codes, i.e.,  

(8)                                                         𝐶 𝑜𝑡𝑎𝑙 = ∑ 𝐶( 𝑅𝑍
∗ , Z, all)𝑧 .  

Now, consider rebate types that are based on the vehicle that a consumer currently owns. 

The optimal loyalty and conquesting rebate levels for ZIP code Z are obtained as 

(9)      𝑅𝑍,𝐿
∗ = argmax

𝑘
𝐶(𝑅𝑘, 𝑍, Camry owners) and 𝑅𝑧,𝐶

∗ = argmax
𝑘

𝐶(𝑅𝑘, 𝑍, non − Camry owners). 

Unlike the single rebate strategy, the optimal face values, 𝑅𝑍,𝐿
∗  and 𝑅𝑍,𝐶

∗ , can be different for a ZIP 

code 𝑍  and total profits for the optimal strategy are determined by summing the maximum 

contributions due to these loyalty and conquesting rebates over all ZIP codes. 

(10)                 𝐶 𝑜𝑡𝑎𝑙
𝐿𝐶 = ∑ 𝐶(𝑅𝑍,𝐿

∗ , Z, Camry owners) +  𝐶(𝑅𝑍,𝐶
∗ , Z, non − Camry owners)𝑍 . 

The profit per consumer from the optimal single rebate per ZIP code, not accounting for 

current vehicle ownership is $28945. Figure 2(a) and 2(b), plot the histograms of the optimal 

loyalty and conquesting rebates, respectively, derived from Model 2, which yield a profit per 

consumer of $2952, an increase of about 2 percent over the base case. This difference shows that 

targeting rebates based on current vehicle ownership has some upside profit potential relative to a 

strategy that ignores this information. The impact is particularly striking for the strategy derived 

from Model 7, which yields an average profit of $3553 per ZIP code, or about 23% more than the 

                                                           
5 For brevity the histogram of rebates associated with this strategy is not included. 
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baseline. In contrast, the optimal loyalty and conquesting rebate derived from Model 5 yields a 

much lower profit per consumer of $3063, which is about the same as those from Model 2. 

The comparison of the histograms of rebates in Figure 2 reveals that the recommended 

targeting strategies from Model 2 (panels a and b) are very different from those from Model 7 

(panels c and d). Specifically, the non-zero loyalty rebates from Model 2 (panel a) are more 

numerous and have a higher face value than those from Model 7 (panel c). Also, the conquesting 

rebates from Model 2 (panel b) have a noticeably smaller zero group and many face values that lie 

above $2500, while those from Model 7 (panel d) have many ZIP codes with no rebate and offered 

rebates that are of lower face values, the vast majority below $1500 and none above $2000. 

===================================================================== 

Insert Figure 2 about here 

=====================================================================  

 

6 Conclusion 

We develop and estimate a new Bayesian spatial choice model that permits preference parameters 

to be spatially correlated among consumers and also incorporates heterogeneous response 

parameters. We apply the model to transaction data from the Los Angeles automobile market and 

find that the proposed model fits the data better than the RCP model and several benchmark models. 

While previous applications of spatial models in marketing have highlighted the role of geographic 

contiguity in demand prediction, we show that the similarity in consumers' previously purchased 

vehicles is even more important. Specifically, in our empirical application, we found that the 

estimated mixing parameter gave 95% of the weight to vehicle similarity and only 5% to 

geographic contiguity. While previous research has documented that past purchases are highly 
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predictive of future choices made by a consumer, our research shows that a spatial model can help 

expand this predictive power beyond within-consumer inertia to other consumer’s choices.  

We make a methodological contribution to the spatial literature by proposing a new 

approach to assimilate predictive uncertainties associated with different kinds of weight matrices 

in a coherent and structured manner, which outperforms the existing approach. We also expand on 

the existing promotional targeting literature by studying discounts based on previous purchases, 

specifically loyalty- and conquesting rebates, which have been understudied in the literature. We 

show how managers can use the model to come up with better rebate programs, how these types 

of rebates are more effective than traditional price discounts that ignore previous purchases and, 

most importantly, that loyalty and conquesting rebates derived from the proposed model yield 

substantially higher profits.  

 There are several limitations to this research, which also present opportunities for future 

research in this area. First, in our work contiguity is only based on geographic distance and 

previous vehicle information, which could be expanded to include other socio-demographic or 

purchase characteristics. For example, consumer’s income, ethnicity, age or previous search 

history or dealership visits may form a viable basis of 𝑊 matrices that explain variation in intrinsic 

preferences. Similarities from the previous vehicle-based 𝑊 matrix can be expanded to include 

more attributes, for example, engine size, gas mileage and so on. Second, our model only allows 

for spatial correlation in the preference parameters, so a promising avenue for future research is to 

develop models that can also incorporate spatial correlation in the response parameters. Third, the 

modeling approach could be extended to accommodate spatial correlation in the features of the 

alternatives themselves, similar to the spatial demand model Duan and Mela (2009) in which 

geographic distance between alternatives (outlet location) serves to identify consumer preferences. 
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Finally, while our empirical application demonstrates the value of modeling spatial correlation 

applying it to larger datasets would yield practical benefits to manufacturers with large product 

lines. Thus, scaling up the algorithms to do this more efficiently also represents a promising area 

of future research. 
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ity  
+ Previous vehicle 

M
ixing probabilities 

from
 individual W

 
m

atrices 

ZIP code level 
heterogeneity 
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Table 2. Summary Statistics 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

  

Vehicle model Average 
price ($) 

Average 
rebate ($) 

Average 
APR (%) 

Market  
share (%) 

Accord 21,386 2 6.02 47.66 

Altima 21,058 1500 9.16 17.58 

Camry 21,208 2 9.57 30.08 

Passat 25,332 171 5.16 4.24 
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T
able 3. M

odel Fit Statistics 

D
escription 

Spatial contiguity 
M

atrix 
M

ethod of m
ixing 

m
ultiple contiguities 

H
eterogeneity 

in consum
er 

response 

C
alibration 
sam

ple 
H

oldout 
sam

ple 

 
 

 
M

A
D

 
LM

D
 

M
A

D
 

M
odel 1: 

Standard Probit 
- 

N
A

 
- 

0.416 
– 640.35 

0.465 

M
odel 2: 

R
andom

 C
oefficient Probit 

- 
N

A
 

ZIP code level 
heterogeneity 

0.369 
– 581.28 

0.430 

M
odel 3: 

Spatially C
orrelated Preferences 

G
eographic proxim

ity 
 

N
A

 
- 

0.327 
– 492.61 

0.430 

M
odel 4: 

Spatially C
orrelated Preferences 

Previous vehicle 
  

N
A

 
- 

0.317 
– 482.38 

0.423 

M
odel 5: 

Spatially C
orrelated Preferences 

G
eographic proxim

ity 
+ previous vehicle 

D
irect M

ixing of W
 

m
atrices 

- 
0.325 

– 490.52 
0.425 

M
odel 6: 

Structural U
ncertainty incorporated 

Spatially C
orrelated Preferences 

G
eographic proxim

ity 
+ Previous vehicle 

M
ixing probabilities 

from
 individual W

 
m

atrices  
- 

0.315 
– 462.43 

0.421 

M
odel 7: 

M
odel 6 + Response H

eterogeneity 
G

eographic proxim
ity  

+ Previous vehicle 

M
ixing probabilities 

from
 individual W

 
m

atrices 

ZIP code level 
heterogeneity 

0.304 
– 453.84 

0.373 
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Table 4. Parameter Estimates of the Proposed Model (Model 7) 

 Posterior Mean Posterior Std. Dev. 

Preference Coefficients 

Accord – 4.4749 1.4357 

Altima – 2.8943 1.3233 

Camry – 1.2968 1.3037 

Response Coefficients 

Last Make 2.1791 1.1802 

Price – 1.5768 0.8818 

Price residuals – 1.1822 0.8253 

Closest Dealer 1.1839 1.1887 

Spatial Coefficients: Marginal Distribution 

Accord 0.0004 0.0517 

Altima – 0.0013 0.0353 

Camry – 0.0025 0.0372 

Spatial Correlation Parameters 

Spillover of Geographic preferences ( 𝜌 ) 0.5804 0.1192 

Spillover of Vehicular preferences ( 𝜌 ) 0.3239 0.0864 

Mixing Parameter 

Representation of Geographic Information 0.0454 0.0166 
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Figure 1. Schem
atic R

epresentation of Proposed M
odel  
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Figure 2. Histograms of Optimal ZIP code-Specific Loyalty and Conquesting Rebates for Model 

2 (panels a and b) and Model 7 (panels c and d). The horizontal axis in each plot shows the 

optimal rebate amount and the vertical axis shows the density value. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 



Appendix: MCMC Algorithms

MCMC update for Model 3, 4 and 5.

0. Set,% = _(0),⌧ +
�
1 � _(0)

�
,+ .

1. D
8
| H8, V(0) , \ (0) ,⌃(0)

, (0)
, d

(0)
, _

(0) ⇠ Truncated Normal
�
-8V

(0)
8

+ \ (0)
8

,⌃(0) � , with the trunca-

tion thatD8 9 > D8 9 0 if H8 = 9 . HereD
8
=

�
D(8�1)�+1, . . . , D(8�1)�+�

�
, and \ (0)

8
=

�
\
(0)
(8�1)�+1, . . . , \

(0)
(8�1)�+�

�
.

2. V(1) | D, H8, V(0) , \ (0) ,⌃(0)
, (0)

, d
(0)
, _

(0) ⇠ Normal
�eV,��

where

� =
h
-
>(⌃(0)�1 ⌦ �=)-

i�1
, and

eV = �
h
-
>(⌃(0)�1 ⌦ �=) (D � \ (0))

i
.

3. \ (1) | D, H8, V(1) , \ (0) ,⌃(0)
, (0)

, d
(0)
, _

(0) ⇠ Normal(&4,&), where 4 = D � -V(1) ,

' =
�
�= � d(0),% ⌦ ��

�
, and & =

⇣
⌃(0)�1 ⌦ �= ��(0)�1

'
>
'

⌘
.

4. f (1)
9

2 | D, H8, V(1) , \ (1) ,⌃(0)
, (0)

, d
(0)
, _

(0) ⇠ InvGamma
�
0f, 1f + 40

9

>
4
0
9

�
, where 0f = =/2 + 2,

1f = 10,

4
0 = D � \ (1) � -V(1) , and 4

0
9
=

�
4
0
9
, 4

0
�+ 9 , . . . , 4

0
(=�1)�+ 9

�>
.

5. k (1)
9

2 | D, H8, V(1) , \ (1) ,⌃(1)
, (0)

, d
(0)
, _

(0) ⇠ InvGamma
�
0k , 1k + Z>

9
Z 9

�
, where 0k = =/2 + 2,

1k = 10,

\
9
=

⇣
\
(1)
9
, \

(1)
�+ 9 , . . . , \

(1)
(=�1)�+ 9

⌘>
, and Z 9 =

�
�= � d(0),%

�
\
9
.

6. d(1) | D, H8, V(1) , \ (1) ,⌃(1)
, (1)

, d
(0)
, _

(0) is equal to ed with probability c and equal to d(0) with

probability 1 � c, where

ed ⇠ Normal
�
d
(0)
, 0.0052�

,



c = min

8>>><
>>>:

1,
|e' | exp

⇣
� 0.5k (1)

9

�2
\
>
9

e'> e'\
9

⌘

|'(0) | exp
⇣
� 0.5k (1)

9

�2
\
>
9
'
(0)>

'
(0)
\
9

⌘
9>>>=
>>>;

with

'
(0) = �= � d(0),%, and e' = �= � ed,%.

7. _(1) | D, H8, V(1) , \ (1) ,⌃(1)
, (1)

, d
(1)
, _

(0) is equal to e_ with probability c and equal to _(0) with

probability 1 � c, where

e_ = 1/{1 � exp(�eU)} with eU ⇠ Normal
⇣
log(_(0)/

�
1 + log_(0)

�
, 0.0052

⌘
, and

c = min

8>>><
>>>:

1,
|e' | exp

⇣
� 0.5k (1)

9

�2
\
>
9

e'> e'\
9

⌘

|'(1) | exp
⇣
� 0.5k (1)

9

�2
\
>
9
'
(1)>

'
(1)
\
9

⌘
9>>>=
>>>;

with

'
(1) =

�
�= � d(1),%

�
, e' =

�
�= � d(1)g,%� , and g,% = e_,⌧ +

�
1 � e_�,+ .

*For model 3 and 4, skip step 7, and set _(1) = _(0) = 1 and _(1) = _(0) = 0 respectively.

Remark on model estimation. The model parameters f9 and k9 are not separately identifiable.

But our purpose of the proposed model is in predicting the discrete choices of the customers. Thus

we can assess the predictive performance of the model by restricting the ratios of f9/k9 in the

compact set [0.10, 10]. Our MCMC strategy for model estimation implemented this restriction.

Additionally, the response coe�cients Vs are identifiable in the proposed model and thus we can

provide statistical inference for these parameters of interest based on the MCMC draws of these

parameters (as discussed in Section 4.1 of the paper).

MCMC Update for Model 6 and 7.

Let⇠8 is a categorical variable with possible values in {21, . . . , 2!}. In the paper they denote the

whether in the structural uncertainty model the individual follows geographic similarity, or follows

vehicle similarity based utility model. Then [*8 9 | ⇠8 = 2;] = [*8 9 | , (;)], where , (1)
, . . . ,,

(!)

are the ! possible spatial similarity matrices, and [*8 9 | , (;)] specifies a preference model. To

generalize our notation we add (;) in the superscript, e.g., f9 becomes f (;)
9

. Let W; = Pr(⇠8 = 2;)



for ; = 1, . . . , !.

Priors: The corresponding parameters from separate components have independent and identi-

cal prior distributions. Thus, we only need to specify the additional prior for the W;’s. We let

(W1, . . . , W!) ⇠Dirichlet(3/!, . . . , 3/!). In particular, when ! = 2, W := W1 ⇠ Beta(3, 3).

MCMC for (\ (;)
8 9
, V

(;)
:
, d

(;)
,k

(;)
9
,f

(;)
9
, W;): The index 8 runs from 1 through =, 9 runs from 1

through � � 1 (where � is the number of choices in a multiple choice model), : runs from 1

through  the number of covariates, and ; runs from 1 through !. We summarize here the MCMC

step for updating the model parameters from '0(;) :=
⇣
\

0(;)
8 9

, V
0(;)
:

, d
0(;)

,k
0(;)
9

,f
0(;)
9

, W
0
;
,⇠

0
8

⌘
to

'1(;) =
⇣
\

1(;)
8 9

, V
1(;)
:

, d
1(;)

,k
1(;)
9

,f
1(;)
9

, W
1
;
,⇠

1
8

⌘
.

1. Update component labels:

i. For each 9 , simulate
⇣e\ (;)1 9 , . . . ,

e\ (;)
= 9

⌘
from Normal(0,⌅(;)), where ⌅(;) =

�
� � 0.4(, (;)) +

,
(;)) � 0.42

,
(;))
,

(;) �1
.

ii. Calculate ?̃ (;)
8

= Pr
⇣
H8 | , (;)

,e\0(;)
8 9

, V
0(;)
:

, d
0(;)

,k
0(;)
9

,f
0(;)
9

⌘
.

iii. Calculate ?̂ (;)
8

= Pr
�
H8 | , (;)

, '0(;) � for ⇠0
8
= 2; . Set ? (;)

8
= ?̂ (;)

8
1
�
⇠

0
8
= 2;

�
+ ?̃ (;)

8
1
�
⇠

0
8
< 2;

�
.

iv. Update ⇠1
8
= 2; with probability proportional to W0

;
?
(;)
8

.

2. Update the component specific parameters:

For each ;, update (\1(;)
8 9

, V
1(;)
:

, d
1(;)

,k
1(;)
9

,f
1(;)
9

), using the data where ⇠1
8
= 2; . The details

are same as Steps 1 through 6 detailed for Model 5, with two changes: (a) the spatial similarity

matrix is, (;) in place of,% there, and (b) only the subset of data where ⇠1
8
= 2; are used. Also,

for Model 7, update the response coe�cient V as in a random coe�cients model for the three digit

zip codes.

3. Update W;:
⇣
W

1
1 , . . . , W

1
!

⌘
⇠ Dirichlet

⇣
3 +Õ

=

8=1 1
�
⇠

1
8
= 21

�
, . . . , 3 +Õ

=

8=1 1
�
⇠

1
8
= 2!

� ⌘
.

Computational details of implementation of the MCMC algorithms and convergence check.

Here we give some further remarks about the implementation of these algorithms, their computation,



and verification. These algorithms were implemented on the R software. Some existing packages

such as biglm and bayesmwere used and Rcpp package was used for implementing various matrix

computations. Further, parts of the code were parallelized using the foreach and doSNOW package

in 4 cpu cores. For each model we verified convergences using various statistics trace plot that are

standard in the packages coda and mcmcplot.

Alternative � = 4 was the base model whose utility is reset to 0, and variance terms were

scaled by the normalizing f1 = 1. These implementations were run on a 1.7GHz quad-core Intel

i7 processor with 32GB ram. Model 3–5 took about 30 hours to draw 100000 mcmc samples and

Model 6 and 7 took about 50 hours to draw 100000 mcmc samples.


